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1. INTRODUCTION 

Inclement weather events such as fog, snow, ground blizzard, slush, rain, and strong wind affect 

roadways by impacting pavement conditions, vehicle performances, visibility, and drivers’ 

behavior. Road-user characteristics and behavior are among the most important elements 

influencing the driving task. The ability to see objects that are in motion relative to the eye 

(“dynamic visual acuity”) and the reaction process (e.g., speed choice, lane maintenance, car 

following, etc.) are of utmost importance for safe driving. Adverse weather conditions can result 

in a sudden reduction in visibility on roadways, which leads to an increased risk of crashes. Effects 

of adverse weather conditions on the operations and safety of transportation is considerably 

researched; however, the primary elements of driver behavior and performance are absent from 

these studies. According to the U.S. Department of Transportation’s Federal Highway 

Administration (FHWA), weather contributed to more than 24% of the total crashes between 1995 

and 2008, based on National Highway Traffic Safety Administration (NHTSA) data. Several 

studies concluded that crashes increase by 100% or more due to vision obstruction during rainfall 

(National Traffic Safety Board, 1980; Brodsky and Hakkert, 1988), while others found more 

moderate, but still statistically significant, increases (Andrey and Olley, 1990; Andreescu and 

Frost, 1998). Sudden reduction in visibility was found to increase severity level of crashes, and 

these crashes tend to involve more vehicles compared to other crash types. According to the 

NHTSA’s Fatality Analysis Reporting System (FARS), inclement weather of rain, snow, and 

fog/smoke resulted in 31,514 fatal crashes between 2000 and 2007. Shankar, Mannering, and 

Barfield (1995) reported that the crash rates increased for locations with a high number of rainy 

days per month, maximum rainfall, and maximum snowfall. Ahmed et al. (2012) reported that an 

additional one inch increase in precipitation elevated the risk of a crash by 169%. The literature 

shows a variation of crash risk estimates; however, a general trend can be concluded that adverse 

weather and road conditions can easily elevate the risk of crashes. Drivers' performance and 

behavior are absent in safety modeling due to lack of driver data. The second Strategic Highway 

Research Program (SHRP2) has collected the most comprehensive Naturalistic Driving Study 

(NDS). The unique NDS data will enable researchers to better understand the role of driver 

performance and behavior under various highway research. 

2. PROJECT OBJECTIVES AND RESEARCH QUESTIONS 

The Wyoming Department of Transportation (WYDOT) and University of Wyoming have 

completed a proof-of-concept utilizing a sample NDS data set and Roadway Information Database 

(RID). The NDS and RID data sets were utilized to better understand how drivers adjust their 

behaviors to compensate for increased risk due to reduction in visibility. The main goal of this 

study was to enhance the understanding of how drivers respond to adverse weather and road 

conditions (e.g., speed adaptation, lane maintenance, car following, etc.). This was conducted by 

compiling a sample data set from DS data, then extracting and reducing the data for inclement 

weather events (i.e., heavy rain in Phase 1) on freeways to address the following research 

questions: 

1. Can inclement weather trips be identified effectively using NDS and RID data? 

2. Can driver responses (i.e., speed and headway adaptation, and lane wandering) during 

inclement weather (i.e., reduction in visibility due to heavy rain in Phase 1) be characterized 

efficiently from NDS data? 

3. What are the best surrogate measures for weather-related crashes that can be identified using 

NDS data? 
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4. What type of analysis can be performed and conclusions be drawn from the resulting data 

set? 

According to the FHWA, Connected Vehicle (CV), Variable Speed Limits (VSL), and Advanced 

Traveler Information Systems (ATIS) are considered the next step in tackling U.S. freeway 

congestion and safety problems. VSL systems have been widely implemented in the U.S. and 

Europe to help mitigate: 1) recurrent congestion; 2) adverse weather impacts on freeways; 3) traffic 

injuries and fatalities; and 4) pollution. VSL systems will be an integral part of CV technology.  

Because selecting the right speed for the condition is considered one of the most important driving 

tasks on high speed facilities, and the interaction between the driver and weather condition is not 

well understood, the objective of this research is to assess the relationship between driver behavior 

(i.e., speed and headway choice), roadway factors, and environmental factors.  

The study will gain insights into drivers’ dynamics in regard to choosing speeds and headways for 

different conditions and what cues are the most effective in providing drivers with a more realistic 

VSL system. It will also provide valuable information about how drivers interact with changing 

roadway and weather conditions and the effectiveness of countermeasures. All current VSL 

systems’ algorithms are based solely on weather and traffic conditions. To the knowledge of the 

principle investigators, no VSL systems considered driver behavior in their algorithms. Current 

practices in setting speed limits within VSL systems under different traffic and weather conditions 

are based on traffic simulation, survey questionnaires, and historical crash data. The NDS data will 

help provide objective insights into what drivers actually do during adverse weather and road 

conditions. 

Wyoming was selected as one of three sites for the Connected Vehicle Pilot Deployment; the 

project will be conducted on Interstate 80 (I-80) VSL corridors. The research from this study will 

aid in supporting CV technology. Continuous data collected in real-time from vehicles will be 

analyzed to examine the usefulness of the NDS data in providing real-time weather information. 

Based on the experiences in Phase 1, we propose in Phase 2 addressing a 5th research 

question: 

5.  Can the NDS data be extrapolated to provide real-time weather information in the 

context of Road Weather Connected Vehicle Applications? 

The main objective of this research is to examine the feasibility of using NDS and RID data sets 

to improve our understanding of weather- and visibility-related crashes. The study will help in 

enhancing suggested speed limits within VSL systems and providing guidance information within 

ATIS. This study will investigate the applicability of using vehicle time series data to support CV 

technology during inclement weather. The outcome from this research will help in reducing traffic 

injuries and fatalities. 
  

3. DATA ACQUISITION AND PREPARATION 

Data acquisition and reduction are crucial steps in this study. In Phase 1, NDS data were requested 

to examine driver response in rain/heavy rain in the states of Florida and Washington. Roadway 

Information Database (RID) as well as visual inspection of aerial and street view images from 

Google maps were also utilized. The provided NDS data included forward-facing and rear-facing 

videos, basic trip characteristics, and selected vehicle time series data. To address the first research 

question of identifying appropriate trips in rainy conditions, a preliminary criterion for data 

extraction was identified by the University of Wyoming (UW) research team. To accomplish the 

study objectives, 50 NDS trips during rain/heavy rain on freeway segments from Florida and 
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Washington States were requested. Identifying and extracting requested data was a challenging 

task in this project. The criterion for NDS data extraction is unique for various reasons. Weather 

information is not readily available in NDS and RID. Although wiper setting could give an 

indication about rain intensity, wiper setting is not consistent across different vehicles. Wiper 

setting in NDS data indicates the position of the wiper switch rather than wiper swipe rate; 

moreover, different drivers have different tolerances to rain/visibility, and splashes from other 

vehicles may affect driver choice of the appropriate wiper speed. There was another issue 

encountered during the preliminary investigation on five sample traces provided by VTTI to fine 

tune the extraction process: the wiper blades of Honda Civic vehicles did not cover the whole 

windshield in front of the camera. The UW research team had to come up with a strategy to 

effectively identify NDS trips in rain/heavy rain without introducing biasness to the sample data 

used in Phase 1. The final NDS extraction steps for trips in rain/heavy rain were as follows: 

1) Only trips with multiple wiper settings were targeted; vehicles that did not include the full 

spectrum of values for the wiper status (0, 1, 2, and 3) were filtered out. Vehicles with 

on/off wiper settings only would not provide an indication of rain intensity. 

2) Months with high rain precipitation in the states of Washington and Florida were used for 

this task. 

3) Only NDS daytime trips in rain on freeways would be used. Nighttime trips were 

eliminated in Phase 1 due to the low resolution of provided sample video data. 

4) Honda Civics were eliminated from the data set because of the lack of wiper blade coverage 

of the windshield surface in front of the camera. 

5) Potential events were tagged with the duration of the trip that different wiper settings of 0, 

1, 2, and 3 were active to facilitate data extraction for light/heavy rain conditions. 

6) Each identified trip in rain was matched with two trips in clear weather conditions for the 

same route and subject as much as possible. 

An additional 100 matching NDS trips during clear weather on the same segments and subjects in 

Florida and Washington States were requested. About 147 useful traces with requested 

characteristics in rain/heavy rain, and their matching clear weather traces, were provided. Some of 

the provided trips in rain did not have matching trips in clear weather and thus were excluded from 

the analysis. Although most of the trips in inclement weather conditions were matched with two 

trips in clear weather conditions, only a matching rate of 1:1 was achieved in Phase 1 due to data 

limitation. Matching is important to control for sundry factors such as driver population, roadway 

geometry, etc. It is worth mentioning that real-time traffic data are not available in the NDS data. 

To isolate the impact of adverse weather conditions on driver behavior, trips in free-flow traffic 

were identified. Classifying the NDS data into two different traffic states (free-flow and mixed 

traffic) resulted in a total of 56 trips that were considered for further analysis. Travel times were 

used to broadly identify trips in free-flow/light traffic; the presence and distance to other vehicles 

identified by the front radar and the estimated headway times were also a good indicators of traffic 

conditions. NDS video data were manually analyzed to verify and validate results. Table 1 shows 

summary statistics for the number of trips, route names and length of routes, total travel times, and 

percentages of wiper use at different settings along with their matching clear weather trips. After 

screening provided data for surrogates for crashes/near crashes, only three trips were identified as 

events, two of which occurred in rain. All corresponding RID data were identified and linked to 

the provided NDS data. The 56 NDS trips constituted a total of about 1,775 interstate kilometers 

traveled over 21.94 hours on six interstate routes in Florida and Washington States. These trips 

occurred mostly on I-4, I-75, and I-275 in Florida, and on I-5, I-90, and I-405 in Washington.   
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Table 1: Summary Statistics of NDS Trips Considered in Phase 1 

 Traffic 

Condition 
Weather 

Condition   Heavy Rain 
Matched 

Clear 
Light Rain 

Matched 

Clear 
Total 

Free-

Flow 

Condition 

Number of Trips 7 7 9 9 32 trips 

% Wiper 

Setting 

0 6.1% 99.5% 0.0% 96.6%   

1 0.0% 0.0% 60% 3.4%   

2 0.0% 0.0% 22% 0.0%   

3 93.9% 0.5% 18% 0.0%   

Total Duration (hr) 3.26 2.80 1.42 1.37 8.85 hr 

Total Length (km) 308.67 308.67 172.76 172.76 962.86 km 

Heavy/ 

Mixed 

Traffic 

Number of Trips 3 3 9 9 24 trips 

% Wiper 

Setting 

0 0.0% 99.9% 6% 91.2%   

1 10% 0.0% 50% 8.8%   

2 14% 0.0% 26% 0.0%   

3 75.2% 0.1% 18% 0.0%   

Total Duration (hr) 1.34 1.64 5.44 4.67 13.09 hr 

Total Length (km) 95.3 95.3 309.64 312.05 812.29 km 

Total Number of Trips 10 10 18 18 56 

 

4. DATA VISUALIZATION AND REDUCTION 

Dealing with the NDS data could be challenging for various reasons: the size and complexity of 

the data, the continuous nature of the data, the difficulty of identifying events of interests, 

processing and reducing video data, identifying weather conditions and visibility limits, linking 

NDS data with RID data, identifying surrogates for different crash types, and defining baselines 

in normal driving conditions.  

To efficiently characterize driver responses (i.e., speed and headway adaptation, and lane 

wandering) during inclement weather (i.e., reduction in visibility due to rain/heavy rain in Phase 

1), an interactive visualization and reduction software was developed. The software is developed 

in C++ under the Microsoft Visual Studio 2013 environment. It runs on Windows workstations 

and uses multimedia libraries that allow the playback and manipulation of video files. The software 

synchronizes the two video files for the front and rear NDS cameras, as well as the time series data 

file. This allows users to relate various time series variables to the front and rear videos. In addition, 

time series could be smoothed using a moving average technique and extracted for further analysis. 

 

5. MACHINE VISION VISIBILITY ESTIMATION 

The software is also under development to provide the level of visibility exhibited during driving 

conditions as recorded in the video. The UW research team is investigating various image 

processing techniques. One approach to gauge the level of visibility is by measuring the amount 

of blur in the image. If an image is sharp, one can assume that the visibility is rather high. 

Conversely, a low visibility level would cause the image to loose sharpness and become blurred. 

The problem of determining the visibility level is heuristic. In other words, it requires 

computational algorithms that may not guarantee a correct solution for every case. They can have 

a good level of accuracy, but they are not 100% foolproof.  
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Figure 1: NDS Visualization and Reduction Software 

Current challenges with the NDS videos include the fact that they span a wide range of driving 

and weather conditions. These conditions, among others, include varying levels of brightness and 

ambient light, sceneries, distances to other vehicles and obstacles, headlights and/or taillights of 

cars ahead, reflections from the road and other objects, street lights, and rain. These conditions, 

when aggregated together in different combinations, can trick the algorithm into making inaccurate 

assumptions, and eventually providing less than optimal results. 

The algorithm may work with a certain level of confidence on some images, but behaves poorly 

on others. It is also difficult to teach the algorithm to know when it is providing inaccurate results. 

This is typically the nature of the heuristic algorithm development cycle where calibration is 

applied to pertinent factors and conditions to improve the performance. The algorithm is then 

retested, and the cycle is repeated in an iterative manner. The effort is currently focused on 

improving the accuracy and performance of the visibility algorithm. The goal is to maximize the 

detection accuracy by minimizing false positives and false negatives. The research team is 

attempting other image processing techniques. One of the techniques aims at detecting lane 

markings and other objects, such as road signs and light poles, to estimate the visibility level. It 

also takes into account an estimate of the object distance from the camera as correlated with the 

object location in the video frame. The visibility index is estimated based on the object clarity and 

its estimated distance from the camera. It should be noted that the NDS utilizes a single camera, 

though a stereo camera system usually provides a higher accuracy for distance estimation.  

 

6. PRELIMINARY ANALYSIS AND DESCRIPTIVE STATISTICS 

As mentioned earlier, trips in rainy conditions were identified by extracting trips with a high 

number of minutes of wipers used at different speed settings. NDS video data were manually 

analyzed for 14 randomly selected trips to verify and validate results. The verification and 

validation process revealed that some trips had mixed light rain and heavy rain, and clear weather 

conditions. Also, traffic conditions were characterized using presence and distance to other 
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vehicles, and average headway times. Trips were classified into six categories based on visibility 

and traffic condition: light rain, heavy rain, and clear weather in free-flow and heavy traffic.  

For automatic identification of trips in rain, other basic trip characteristics such as number of brake 

activations, high variability in headway times and distances, electronic stability control, roadway 

departures, low coefficient-of-friction, number of Anti-Lock Braking System (ABS) activations, 

and number of traction control activations were examined in Phase 1. A preliminary analysis on 

trips in rain/heavy rain indicated that there were no ABS, traction control, or electronic stability 

control activations in any of the trips. This could be explained due to the fact that these variables 

are not available in NDS data for all vehicles; moreover, the activation of these safety features is 

not common in rain on freeway segments. As mentioned earlier, 147 NDS total trips were acquired, 

but only 56 were considered for further analysis when matching is needed. The total 147 acquired 

trips were utilized in the Ordered Probit model. Results from the preliminary analysis and 

descriptive statistics were as expected in most of the cases. The following sections provide 

discussions about speed, acceleration, lane maintenance (yaw rate), lane change, and headway 

during heavy rain contrasted to clear weather condition in free-flow and heavy traffic. Table 2 

shows descriptive statistics and various statistical tests for the main time series variables of interest 

for heavy rain/clear weather in free-flow and heavy traffic. Also, descriptive statistics are shown 

for trips that included heavy rain and clear weather conditions within the same trips. 

  

6.1. Driver Behavior (Speed, Acceleration, Lane Maintenance/Change, and Headway) 
This proof-of-concept phase investigated the distribution and variation of speeds between clear 

and adverse weather conditions in various traffic conditions. Six possible scenarios were 

considered and compared: light rain, heavy rain, and clear weather in light and heavy traffic. 

Characterization of traffic flow became very important for various reasons: realistic traffic 

conditions and the appropriate distributions are needed for the calibration of the simulation models, 

and predictability of traffic conditions in various weather conditions is needed for an effective and 

realistic VSL system. Characterization of traffic conditions and speed in different weather 

conditions, moreover, will help in applications such as CV technology. If unusual traffic patterns 

are detected, these geospatial locations could be flagged for a possible and timely mitigation 

strategy. From the NDS sample data, it was concluded that speeds have a Weibull distribution in 

heavy rain under free-flow condition while the speeds were normally distributed in clear weather 

for the matching data set as shown in Figure 2. Speed in free-flow condition is important for VSL 

application because the speed choice here is not affected by the interaction with traffic. A t-test 

indicated that the average speed in heavy rain under free-flow traffic condition was significantly 

(16.32km/hr) lower than in clear condition and free-flow traffic. It was also found that speeds have 

higher variability during heavy rain compared to clear condition under free-flow traffic.  

Other speed distributions for other scenarios were examined, but they were not included in this 

report for brevity. Examining drivers’ selection of speed during traffic congestion is also 

important. This could help determine whether drivers take higher risks during adverse weather 

conditions to make up for delays encountered because of congestion. Speed distribution during 

heavy rain in congestion (mixed/heavy traffic) did not fit a specific distribution, which may 

indicate higher speed variability. The speeds during clear weather conditions in mixed/heavy 

traffic volumes on the same routes and subjects fitted two normal distributions, which is common 

during congestion on freeways. There was no significant difference in the distribution of speeds 

during light rain. 
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Although matching technique may control for sundry factors (among them roadway geometry, 

traffic condition, and driver population) supplementary traffic-flow parameters may be needed to 

fully isolate driver behavior of speed selection due to the environment. Loop detector and 

Automatic Vehicle Identification (AVI) traffic-flow data will be collected on the NDS routes 

during the same time duration from local agencies in Phase 2. 

The acceleration/deceleration variable was examined, and ±0.3g acceleration/deceleration rates 

were set as a threshold to identify aggressive braking/acceleration events. The preliminary analysis 

showed that while heavy rain has a wider range of acceleration and statistically has a higher 

average, the average deceleration was found to be statistically higher in the matching clear weather 

conditions. The variability of acceleration and deceleration and the proportions of deceleration 

lower than -0.3g were found to be greater in clear weather conditions. These findings coupled with 

the observed reduction in speed during heavy rain indicate that drivers compensate for the slippery 

surface conditions by not decelerating by rates greater than -0.3g.  

The lane offset variable in the NDS data is estimated using machine vision techniques. Lane offset 

is an indication of either a lane change or a deviation from the lane. Lane change is defined as an 

intended and substantial lateral shift of a vehicle (Chovan et al., 1994). Lane change could be 

modeled using multiple variables: turn signal, steering angle, yaw rate, and machine vision lane 

offset. Although lane change is not the main focus of this study, distinguishing lane change from 

lane wandering is important to understand driver behavior in adverse weather conditions. Utilizing 

time series and video data, lane changes were separated from lane wandering.  

Figure 2: Observed and Fitted Distributions for Speeds during Heavy Rain and Clear Weather under 

Free-Flow Traffic 
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Table 2: Descriptive Statistics for the NDS Instrumented Vehicles 

 
Statistical 

Tests 
Free-Flow Traffic (Matched Trips) Comparison within Trips 
Heavy Rain Matched Clear Heavy Rain Clear Weather 

Speed (kph) 

Average 85.07 101.39 91.8 106.36 
SD 14.69 10.72 14.65 6.53 
Min. 17.4 70.1 35.09 53 
Max. 109.4 133.5 125.5 125.9 
Median 87.5 101 94.19 106 

t-Test 
Avg. Speed is significantly lower in Heavy 

Rain 
Avg. Speed is significantly lower in Heavy 

Rain 

F-Test Speed variability is higher in Heavy Rain Speed variability is higher in  Heavy Rain 

Z-Test 
Proportion of violation ≥ 10 km/h above the 

speed limit is significantly higher in Clear 

Weather 

Proportion of violation ≥ 10 km/h above the 

speed limit is significantly higher in Clear 

Weather 

Acceleration/ 

Deceleration (g) 
(Positive 

columns= 

Acceleration) 

Average 0.0263 -0.0266 0.0253 -0.0276 0.0213 -0.0282 0.0158 -0.0162 
SD 0.0181 0.0214 0.0184 0.0225 0.0157 0.0245 0.0160 0.0185 
Min. 0.0029 -0.3132 0.0015 -0.4321 0.0015 -0.2842 0.0029 -0.2610 
Max. 0.2059 -0.0029 0.1769 -0.0015 0.1769 -0.0015 0.1624 -0.0029 
Median 0.0232 -0.0232 0.0203 -0.0232 0.0174 -0.0218 0.0116 -0.0087 

t-Test 
Average Acc. is significantly higher in Heavy 

Rain and  avg. Dec. is higher in Clear Weather 
Average Acc./Dec. is significantly higher in 

Heavy Rain 

F-Test 
Acc./Dec. variability is higher in Clear 

Weather 
Acc./Dec. variability is higher in Clear 

Weather 

Z-Test 
Proportions of Dec. lower than -0.3g is 

significantly greater in Clear Weather. No 

Acc. were found higher than +0.3g 

No Acc./ Dec. were found higher/lower 

than ±0.3g 

Yaw Rate (deg/s) 
(negative sign=left 

rotation) 

Average 0.84 -0.97 0.89 -0.8 1.01 -0.97 0.64 -0.61 
SD 0.73 0.65 0.71 0.59 0.88 0.86 0.41 0.46 
Min. 0.33 -8.78 0.33 -3.9 0.16 -8.78 0.16 -4.55 
Max. 6.83 -0.33 5.85 -0.33 10.08 -0.16 3.25 -0.16 
Median 0.65 -0.65 0.65 -0.65 0.65 -0.65 0.49 -0.33 

t-Test 
Yaw rate (right rotation) is significantly higher 

in Clear Weather—no significant difference in 

left rotation 

Yaw rate is significantly higher in  Heavy 

Rain 

F-Test Yaw rate variability is higher in Heavy Rain Yaw rate variability is higher in Heavy Rain 

Lane Offset (cm) 

Average 24.4 -23.04 62.26 -71.92 39.55 -45.99 34.56 -43.39 
SD 22.55 26.87 130.79 135.39 76.44 83.33 65.58 75.06 
Max 964.95 0 999.86 -0.01 838.83 -0.01 955.04 -999.59 
Min 0 -590.8 0.05 -999.12 0.05 -998.61 0.05 -0.04 
Median 20.32 -17.02 18.66 -29.08 16.85 -26.94 15.54 -26.88 

t-Test 
Avg. lane offset to the right and left from the 

lane center is significantly higher in Clear 

Weather 

Avg. lane offset to the right and left from 

the lane center is significantly higher in 

Heavy Rain 

F-Test 
Lane offset to the right and left variability is 

higher in Clear Weather 
Lane offset variability is higher in Heavy 

Rain 

Headway(sec) 

Average 2.17 2.01 1.98 2.02 
SD 1.00 1.12 1.16 1.14 
Max 7.84 6.65 7.58 6.68 
Min 0.16 0.08 0.12 0.15 

Median 2.10 1.99 1.83 1.81 

t-Test Headway is significantly higher in Heavy Rain No significant difference 

F-Test 
Headway variability is higher in Clear 

Weather 
No significant difference 
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A criterion for lane offset values within ±0.3 meters was set to flag lane wandering events, 

especially when these events vary to the right and left over a short duration of time. Continuous 

and steady lane offset within a threshold greater than ±0.3 meters to ±9.5 meters in one direction 

was considered as a full lane change. A past NDS study indicated that using a threshold of ±0.1 

meters resulted in a higher than expected number of lane departures (Hallmark et al., 2015). 

Preliminary analysis indicated that the number of lane changes is higher in clear weather 

conditions while lane wandering was found to be significantly higher in adverse weather 

conditions (heavy rain). Analyzing the NDS time series data in conjunction with video data 

revealed that the estimated NDS machine vision lane offset is too noisy in adverse weather 

conditions and where there are multiple marking lines near merge and diverge sections. The 

min/max values for the lane offset also revealed a very interesting finding: drivers tend to change 

multiple lanes (2–3 lanes) during clear weather conditions versus a single lane change in heavy 

rain conditions. Controlling for entry and exit of the freeway maneuvers, lane changes occurred in 

heavy rain were mostly evasive maneuvers to mitigate an increased risk. From video observations, 

it was found that drivers opted out of speed reduction behind a slower vehicle more often than 

changing lanes. Yaw rate and steering angle are additional variables that could be used to analyze 

lane maintenance. Unfortunately, steering wheel position was only available for a fraction of 

vehicles (only two trips included steering angle data). Yaw rates were analyzed for events with 

lane offset within ±0.3 meters where there were no lane changes. Yaw rates were significantly 

higher in heavy rain, which, as mentioned earlier, might indicate frequent evasive maneuvers to 

mitigate an increased risk.      

On the one hand, average headways were found to be significantly higher in heavy rain compared 

to clear weather condition under free-flow traffic. On the other hand, the variability of headways 

was found to be significantly higher in clear conditions. This could be explained by the fact that 

drivers tend to compensate for the increased risk due to the limitation in visibility by maintaining 

longer headway times.  

Additional analyses were conducted on an individual (no matching) seven NDS traces that were 

identified to have both clear and heavy rain conditions within the same trip. All seven trips were 

in free-flow traffic condition. There was an agreement across the seven trips that speeds were 

reduced significantly with a higher standard deviation in heavy rain than in clear condition. Also, 

the acceleration/deceleration and lane change/maintenance were affected. Number of brakings, 

decelerations, and accelerations were significantly higher in heavy rain than in the clear portion of 

the trips. There were 44 and 22 braking events in heavy rain and clear weather conditions, 

respectively. High variability in yaw rate might indicate either too many lane changes or poor lane 

maintenance. Although the number of lane changes was very limited in heavy rain compared to 

clear conditions, the high variability in yaw rate during heavy rain suggested worse lane 

maintenance capabilities than in the clear condition.  

Figure 3 shows a continuous speed profile, yaw rate, and acceleration data for one of the seven 

trips with both clear and adverse weather conditions in free-flow condition. The driver reduced the 

speed by more than 20 km/hr at the onset of the heavy rain; speed varied significantly afterword. 

It was also noted that a higher yaw rate and acceleration/deceleration rates were encountered 

during the heavy rain duration. It is worth mentioning that the results from trips that included clear 

and heavy rain were not consistent with the matched trips for obvious reasons. Number of 

accelerations, decelerations, and lane changes due to exit, entry, and weaving maneuvers, among 

other variables, are controlled for in the matching approach. 
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Figure 3: Illustration of Sudden Reduction in Visibility Impact on Driver's Performance 

6.2. Speed Selection: GIS Analysis and Odds Ratios 

Table 3 and Figure 4 show speed behavior in clear and adverse weather conditions. Twelve NDS 

trips were linked to the RID via ArcGIS software. The main objectives of linking the NDS 

continuous data and RID were to:  1) compare the NDS speed to the speed limit along a defined 

route, and 2) provide a visual representation of speed selection in ArcGIS environment. Three sets 

of trips in heavy rain, light rain, and clear weather conditions were identified on the same 18.19-

km route (Interstate 405) in Washington. A new layer was added in the ArcGIS to indicate the 

speed selection in both clear and rainy traces along the same route. Odds ratios were used to 

examine the impact of rain on speed behavior. A Z-test was utilized to test the statistical 

significance of the difference between the proportion of speeds in clear and adverse weather 

conditions. Table 3 shows that speed reduction was more likely to occur in heavy rain than the 

corresponding matched trip in clear weather condition. For instance, the NDS drivers drove below 

the speed limit in approximately 37% of their trips in clear weather. In comparison, about 85% of 

the trips in heavy rain were driven with speeds less than the limit. Table 3 indicates that speed 

reduction was more likely to be in light and heavy rain conditions in comparison with the matched 

trips in clear weather condition. The odds ratios of driving below the speed limit, in general, were 

10 and 3 times more likely to be in heavy and light rain, respectively, than matching trips in clear 

weather conditions. On the same I-405 route in Washington, 37% of the speeds were under the 

posted speed limit. This was reduced to more than 85% during heavy rain events. 

 

Table 3: Odds Ratios for Speed Behavior on I-405 (Heavy/Light Rain vs. Clear) 

 
Driving below 

Speed Limit 

Driving above 

Speed Limit 

Odds 

ratio 

Confidence 

Intervals 
Z-statistic 

Significance 

level 

Light Rain  1,797 958 3.19 2.86 to 3.57 20.43 P < 0.0001 

Clear Weather 968 1,651     

Heavy Rain 2,621 454 9.85 8.67 to 11.18 35.19 P < 0.0001 
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Heavy Rain Rain Clear 

Trip ID:643,653,657, and 672 Trip ID: 646,656,660, and 667 Trip ID:642,654,652, and 669 

Total trips duration: 52:36 Total trips duration: 46:13 Total trips duration: 44:30 

Speed Groups Speed Groups Speed Groups 

>5 

Below 

SL 

(0-5) 

Below 

SL 

(0-5) 

Above 

SL 

>5 

Above 

SL 

>5 

Below 

SL 

(0-5) 

Below 

SL 

(0-5) 

Above 

SL 

>5 

Above 

SL 

>5 

Below 

SL 

(0-5) 

Below 

SL 

(0-5) 

Above 

SL 

>5 

Above 

SL 

64% 21% 13% 2% 38% 27% 22% 13% 19% 18% 31% 32% 

 
   

Route: Interstate 405,Washington, Length: 11.3 miles (18.19 km), Start: Mile Marker 27  

Speed limit source: Roadway Information Database (RID) and Street View in Google Map  

 

 

Figure 4: Speed Behavior in Clear, Light-Rain, and Heavy-Rain on I-405, Washington (Mile-

Marker 27 to Mile-Marker 38.3)  
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7. MODELING SPEED SELECTION: ORDERED PROBIT LOGIT MODEL 

To model speed selection, an ordered probit model was calibrated utilizing all the 147 trips 

occurring in various weather and traffic conditions (matching is not required). The model was 

developed for four speed intervals: more than 5 kph below the speed limit (base case), 0–5 kph 

below the speed limit, 0–5 kph above the speed limit, and more than 5 kph above the speed limit. 

Table 4 shows the selected variables for developing the “speed behavior” model in weather 

conditions. The dependent variable is speed selection behavior considering four levels. Generally, 

explanatory variables can be considered as driver’s demographics, vehicle characteristics, roadway 

factors, and traffic and environmental conditions. Due to the lack of drivers’ and vehicle 

characteristics data in Phase 1, only environmental and traffic variables were considered. This 

analysis will be extended with more driver demographics, vehicle characteristics, roadway 

geometry, and test data variables in Phase 2. 

Table 4: Data Description 

Variable Description Type Levels 

Response Variable 

Speed 

Behavior 
Speed selection in various weather 

conditions 
Ordinal 

More than 5 kph below the speed limit 

0–5 kph below the speed limit  

0–5 kph above the speed limit 

More than 5 kph above the speed limit 

Explanatory Variables 

Traffic Traffic Condition Binary 
0= Free-flow 

1= Traffic  

Speed Limit Posted Speed Limit Categorical 
0= below 90 kph 

1= above 90 kph 

Surface 

Condition 

Road surface condition extracted from 

video data 
Binary 

Dry 

Wet 

Weather Type of severe weather condition Categorical 

Clear 

Light Rain 

Heavy Rain 

 

7.1. Model Evaluation and Results  

To confirm the suitability and fitness of the model, the log likelihood ratio and the pseudo R2 were 

used. Table 5 shows the results of the model; the Likelihood Ratio (LR) test statistic falls into the 

rejection area (p-value < 0.05), which means that the overall explanatory variables of the model 

have significant influence on the response at a statistical significance level of 95%. Only 

statistically significant variables were retained in the final models.  

Three factors were found to be significant: weather, speed limit, and traffic condition. Among 

these, weather and traffic have the highest effect on speed behavior. This indicates that reduction 

in visibility significantly impacts drivers’ behavior of selecting speed when compared to light rain 

or clear weather conditions. Drivers are likely to select significantly lower speed during heavy 

rain. Traffic has a negative coefficient as expected. Controlling for all other variables, drivers are 

limited to lower speeds in poorer levels of service. Interestingly, speed limit was significant with 

a negative coefficient, which might imply that NDS drivers tend to comply more to the speed limits 

on freeway segments with higher speed limits. Headway was also used as a crash surrogate under 

various weather and traffic conditions. The results from the headway model yielded expected 
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outcomes and were consistent with the preliminary analysis. Drivers tend to have higher average 

headway times during heavy rain compared to light rain and clear weather conditions. More driver 

demographics such as age, gender, taking risks, etc., and vehicle characteristics might be needed 

to fully reveal driver behavior with respect to speed and headway selection. It is worth mentioning 

that for VSL application in the U.S., speed levels should be modeled within 5 mph intervals. In 

this analysis, there were no trips with 10 mph (16 km/hr) higher than the speed limit, and hence 

speed in km/hr was used.  
 

Table 5: Ordered Probit Model for Speed Behavior in Different Weather Conditions 

Analysis of Maximum Likelihood Estimates 

Parameter   DF Estimate 
Standard 

Error 

Wald 

Chi-Square 
Pr > ChiSq 

Intercept 4 1 9.5048 3.8032 6.2458 0.0124 

Intercept 3 1 10.7118 3.8058 7.9219 0.0049 

Intercept 2 1 12.5218 3.8504 10.5760 0.0011 

Weather 

Clear 1 - - - - 

Light Rain 1 -1.1883 0.6594 3.2476 0.0715 

Heavy Rain 1 -1.6786 0.6414 6.8492 0.0089 

Speed Limit 
Below 90kph 1 - - - - 

Above 90kph 1 -0.1204 0.0391 9.5040 0.0021 

Traffic  
Free-Flow 1 - - - - 

Traffic 1 -2.5873 0.4704 30.2481 <.0001 

 
 

8. NATURALISTIC DRIVING STUDY EVENTS ANALYSIS 

Although crashes and near crashes are available now for various weather conditions in the NDS 

database, no crashes or near crashes were provided in the sample NDS data received in Phase 1. 

Analysis of crash surrogates is important for various reasons; among them is the fact that the 

Connected Vehicle Initiative proposed using vehicles to communicate roadway conditions in 

inclement weather conditions. The objective of analyzing crash surrogates is to provide insights 

into CV weather applications. Real time vehicle dynamics could indicate adverse weather 

conditions. An increased risk because of adverse weather condition could be flagged in real-time 

for a mitigation strategy via VSL systems and CV technologies.  Manual observations of the 

forward-facing video and time series data indicated that there are only three trips with events. Two 

events were a rear-end conflict, while one event involved swerving to the shoulder in a slippery-

surface condition. All events were analyzed as a learning sample to investigate different screening 

procedures to automate the identification of weather-related crash surrogates. The swerving event 

is explained in detail in this report.  

The swerving incident occurred within 30 seconds due to an abrupt change in speed of downstream 

traffic (the leading vehicle had to reduce its speed rapidly). Examining the video reveals no obvious 

reason for the abrupt speed reduction (it seemed like a phantom shockwave phenomena). Due to 

the slippery surface, the following vehicle could not stop on time behind the leading vehicle in the 

same lane. The following vehicle swerved to the right shoulder to avoid a collision with the leading 

vehicle. Figure 5 shows a time line for the event video as sequential snapshots (headway distance 

extracted from the forward radar is indicated). To address question 3, driver behavior of the 

instrumented vehicle (i.e., the following vehicle), the leading vehicle, and the surrounding vehicles 

were characterized before and during the swerving event. The analysis was conducted through 
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detailed modeling of the trajectories of the following, leading, and surrounding vehicles utilizing 

the forward radar, speed, headway, yaw rate, and acceleration time series NDS data.   

 

   

   
 

Figure 5: Timeline Snapshots for Incident in Third Case 

 

Figure 6 illustrates the acceleration and yaw rate for following vehicle synchronized with the 

trajectories of the following, leading, and surrounding vehicles for the swerving event in Figure 5.  

For the first 12 seconds, the acceleration and the yaw rate were nearly constant. Also, the leading 

and following vehicles had a constant headway distance as shown in the trajectory part. Starting 

from the 12th second, an increase in the deceleration was associated with an increase in the yaw 

rate. The deceleration reached -0.66 m/s2, and the yaw rate reached 12.7 deg/s. Additionally, the 

trajectories of the two vehicles intersected, which indicates a near crash if the following vehicle 

continued in the same path/ lane. That event is a clear example of having a near crash that could 

be geospatially flagged in real-time for a proper intervention. The vehicle trajectories show that if 

the driver in the following vehicle continued in the same lane without turning to the right shoulder, 

a crash would have taken place. Acceleration and the yaw rate indicated that the driver made a 

hard brake in combination with a sudden right turn to avoid hitting the leading vehicle. 

 

1 2 

5 4 

3 

6 

Leading Vehicle 

Leading Vehicle Leading Vehicle Leading Vehicle 

Leading Vehicle Leading Vehicle 
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Figure 6: Acceleration and Yaw Rate for Following Vehicle Synchronized with Trajectories of 

Following, Leading, and Surrounding Vehicles for Swerving Event 

 

Although an automated process of weather-related events could be constructed, three events (two 

of which are rear-end conflict) might not be enough to verify the result. More events will be 

investigated in Phase 2 for various adverse weather conditions. About 500 crashes, near crashes, 

and conflict events that occurred in rain, fog/smoke, snow, sleet, and hail as well as an additional 
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1,844 balanced-sampled baseline events will be acquired in Phase 2. Analysis of crash precursors 

is also important to understand the different contributing factors to weather-related crashes.  

9. CONCLUSIONS FROM PHASE 1 

Behavior and road-user characteristics are among the very important elements influencing the 

driving task. A driver’s reaction process to speed choice, lane maintenance, and car following, etc., 

along with his or her ability to see objects that are in motion relative to the eye (“dynamic visual 

acuity”) are critically important factors for safe driving. Though much research has focused on 

highway safety in relation to adverse weather and road conditions, driver behavior and 

performance are absent from these studies. The NDS and RID datasets utilized in Phase 1 revealed 

that modeling drivers’ behavior in adverse weather conditions using vehicle time series data is 

realizable. All research questions proposed in Phase 1 were adequately addressed. Heavy and light 

rain trips were identified effectively using the NDS data. A visualization and reduction software 

was developed; the driving variables such as speed selection, acceleration/deceleration, lane 

change/keeping, and headway were efficiently characterized. The preliminary analysis showed 

significant behavior and performance differences between driving in adverse (i.e., heavy rain) and 

clear weather conditions under free-flow and heavy traffic conditions. An analysis for the 

trajectories and time series vehicle data indicated that surrogate measures for weather-related 

crashes could be identified using the NDS data. Preliminary analysis and ordered probit logistic 

regression models were useful to help in understanding driver behavior under various rain and 

traffic conditions. Phase 2 is aiming at using a larger NDS data set from the six locations and 

analyzing various adverse weather conditions.  
 

10. FUTURE DIRECTION: PHASE 2 

According to the Federal Highway Administration (FHWA), Variable Speed Limits (VSL) and 

Advanced Traveler Information Systems (ATIS) are considered the next steps in tackling U.S. 

freeway congestion and safety problems. VSL systems have been widely implemented in the U.S. 

and Europe to help mitigate: 1) recurrent congestion; 2) adverse weather impacts on freeways; 3) 

traffic injuries and fatalities; and 4) pollution.  

Because selecting the right speed for the condition is considered one of the most important driving 

tasks on high speed facilities, and the interaction between the driver and weather condition is not 

well understood, the objective of Phase 2 is to extend the analysis performed in Phase 1 to better 

assess the relationship between driver behavior (i.e., speed and headway choice), roadway factors, 

and various environmental factors. In Phase 2, it is envisioned that about 2,000 to 3,000 NDS 

traces will be acquired from six states (Florida, Indiana, New York, North Carolina, Pennsylvania, 

and Washington) in various weather conditions (i.e., heavy rain, fog, snow, ice, etc.). The study 

will gain insights into drivers’ behavior in regard to choosing speeds and headways for different 

conditions. The results will help in identifying cues that are the most effective in providing drivers 

with a more realistic VSL system. It will also provide valuable information about how drivers 

interact with roadway and weather and the impact on the effectiveness of countermeasures. The 

algorithms of current VSL systems are based solely on weather and traffic conditions. To the 

knowledge of the principle investigators, there are no VSL systems that considered driver behavior 

in their algorithms. 

Current practices in setting speed limits within VSL systems under different traffic and weather 

conditions are based on traffic simulation, survey questionnaires, and historical crash data. The 

NDS data will help in objectively acquiring better understanding into what drivers are actually 

doing during adverse weather and road conditions. 
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While it was proven in Phase 1 that NDS data are very useful in understanding driver behavior in 

light and heavy rain, these data have a great potential in other adverse weather conditions such as 

snow, ice, fog, etc. More NDS data from different states will be used in Phase 2 to analyze drivers’ 

behavior not only in rainy condition, but also in other adverse weather conditions including snow, 

fog, hail, etc. 

Moreover, NDS could be used to support CV technology. One aspect of CV technology is to collect 

data from vehicles in real-time. Once an adverse weather condition is detected on a particular 

roadway segment, these data could be communicated to the appropriate traffic management center 

(TMC) and useful information could be disseminated to drivers in real-time to mitigate the 

increased risk. While Road Weather Information Systems’ (RWIS) stations are needed to support 

VSL systems, Connected Vehicle could be a better system to collect weather information in real-

time and reduce the cost of deploying more RWIS on our roadways. CV weather information could 

be better than RWIS for the following reasons: 1) RWIS stations are usually mounted at higher 

elevations for better communication and less maintenance, 2) continuous weather information 

collected from CV is better to reflect actual vehicle performance, and 3) severe weather conditions 

could be disseminated in real-time to the TMC to help determine if the road should be closed.  

Wyoming has been selected as one of the three sites for the CV Pilot Deployment. The corridor 

selected for this deployment is equipped with a VSL system. The results from Phase 2 will provide 

insights to improve the algorithms of the weather-based VSL system in Wyoming. 

As mentioned earlier, the NDS data has several advantages over existing non-naturalistic data. 

Driver behavior information prior to crashes, prior to near crashes, and during various 

circumstances could be extracted from the NDS data. Aggregate traffic and weather parameters 

(e.g., average speed, headways, and global weather information) were used in previous studies. 

These studies utilized traffic and weather data collected from inductive Loop Detectors (iLD), 

Automatic Vehicle Identification (AVI) systems, and Roadway Weather Information Systems 

(RWIS) to separate 'crash prone' conditions from 'normal' conditions. Although the approach is 

novel, the aggregation level of traffic and weather information might have limitations. In this 

study, we will have the opportunity to look into continuous speed profiles collected from the 

vehicle itself, trajectories of speeds, accelerations, and decelerations of the following and leading 

vehicles, and driver performance and behavior related to different types of crashes and near crashes 

in various weather conditions. There are more than 3,500 weather-related events recorded in the 

InSight Data Access Website (https://insight.shrp2nds.us/). Among these events, there are 500 

crashes, near crashes, and conflict events that occurred in rain, fog/smoke, snow, sleet, and hail. 

In Phase 2, the 500 weather-related events as well as an additional 1,844 balanced-sampled 

baseline events will be acquired. 

Countermeasures are being proactively implemented by many states to improve safety and 

mobility on highways and freeways; however, the safety effectiveness of such countermeasures is 

not well quantified. The results from this study (Phase 2) will provide more information about 

drivers’ perspective and behavior in choosing safe speeds. The results will help in understanding 

what drivers are actually doing during adverse weather and road conditions and will help suggest 

reasonable speed limits and warning messages within VSL and ATIS systems for implementation 

in Phase 3. 

 

10.1. Management Approach and Risk Mitigation 

Consistent with previous data, analyses conducted in Phase 1 suggest that SHRP2 motorists alter 

driving-related behaviors in response to inclement weather; however, the extent to which 
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individual driver characteristics influence the occurrence and/or extent of these changes remains 

largely unexplored. Inferences drawn from the studies that have taken into account the impact of 

person-level variables in response to adverse weather conditions are generally limited by the 

reliance on retrospective, self-report methods. Data extracted from SHRP provide a unique 

opportunity to evaluate the relation of trait-level driver characteristics on response to inclement 

weather in real-time. It is likely that identifiable motorist variables including experience (e.g., age, 

annual kilometers driven), risk behavior (e.g., accident history, low-knowledge), and other 

psychological variables (e.g., impulsivity, risk perceptions) to date account for important 

variability in driver behavior across studies. Isolation of relevant variables promise to inform 

targets for driver training, real-time data monitoring needed for Connected Vehicle technology, 

and optimization of VSL algorithms. 

Once the notice of approval for Phase 2 is received, the research team will initiate the process for 

the required data-sharing agreement with the Center for Data Reduction and Analysis Support at 

VTTI. To expedite the process, the required Institutional Review Board approval from the 

University of Wyoming has been submitted for Phase 2. In addition, the Statement of Work for 

the data needed in Phase 2 has been finalized with the director of the Center for Data Reduction 

and Analysis Support at VTTI. The expected tasks and their timeline for completing this research 

study are as follows: 

Task 1. Literature Review: Conduct a critical review of the literature related to the Naturalistic 

Driving Study and lessons learned from recently published SHRP2 safety research.  This is 

expected to take 12 months. 

Task 2. Data Acquisition: Data requirements have been updated based on the experience from 

Phase 1. The research team has already discussed various approaches to collect more data needed 

to expand the study. As outlined previously, three-pronged approaches will be used for data 

acquisition in Phase 2: 

- Approach I: Use the approach refined as part of the Phase 1 process, extending it to vehicles 

beyond the Florida and Washington test sites. The process relied on the wiper status 

variable to identify cases where wipers were active at a high speed for an extended length 

of time along freeway environments.  It is expected that this approach will yield about 300 

trips to examine.   

- Approach II: Use the InSight event table to filter out trips that contained crashes, near 

crashes, or baselines and during which heavy rain and some additional adverse weather 

event was observed.  The trips will be filtered to exclude those with short-duration (e.g., 

less than 15 minutes). It is expected that this approach will yield about 200 trips to examine. 

- Approach III: Leverage external databases (e.g., historical weather, traffic) and attempt to 

find NDS trips that overlap with particular adverse weather events. It is expected that this 

approach will yield about 1,500 to 2,500 trips to examine. The processing capabilities of 

the VTTI data warehouse will probably be leveraged in this effort so that the locations and 

times specified by the historical databases can be crossed with all trips in the database to 

obtain trips of interest.  

Additional trips in clear conditions will be acquired to compare a matched “control group” 

condition against driving epochs occurring in adverse weather conditions. The results from Phase 

1 indicated that a ratio of 4:1 would be recommended to cover different traffic states (level of 

service). 

To protect subjects’ privacy, the segments of trips selected will not occur near the beginning or 

end of the trip (defined as a pre-determined distance from trip origin or destination; the distance 
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contains a limited random noise element to further anonymize the trip). Once the segments are 

identified and vetted, time series data for each different trip segment will be exported to include 

various time series data. These data will include DAS Timestamp, FILE_ID, network speed, 

Global Positioning System (GPS) speed, acceleration in x, acceleration in y, ABS activation, 

traction control state, Electronic Stability Control, radar data, estimated headway, estimated lane 

offset, marker probability, ambient light level, yaw rate, wiper status, latitude, longitude, light 

level, steering angle, turn signal, head position, day of week, month, and eye glance location. In 

addition, for drivers represented in the overall sample, specific items from the following 

questionnaires will be acquired: Driver Demographics, Driver History, Driver Knowledge, Visual 

and Cognitive Tests, Conners’ Continuous Performance Test, Barkley’s Attention Deficit 

Hyperactivity Disorder, Screening Test, Risk Perception, Risk Taking, Sensation Seeking, and 

Driving Behavior. According to VTTI, these data will be delivered as one or more Excel 

spreadsheets, and linked to the rest of the data by the Participant ID.   

According to VTTI, it is expected that Approach I will require one month, Approach II an 

additional month, and Approach III three months; however, if all three approaches are selected 

and can be performed concurrently, the overall period of performance is expected to be four 

months. Five months are allocated for data acquisition based on the experience in Phase 1. Other 

tasks will be concurrently performed once the first set of data are received.   

Task 3. Data Preparation: The acquired NDS video data will be processed and reduced; the data 

will be checked for missing values and inaccuracies. The NDS data will be linked to RID data. 

Weather-related events will be verified, and video data will be processed and reduced. The NDS 

video data will be manually analyzed for a few number of random trips to verify and validate the 

results, especially for other weather conditions such as fog, snow, etc. The verification and 

validation process will be automated using the learning sample. This task is expected to be 

completed in five months. 

Task 4. Machine Vision Visibility Estimation: The visualization and reduction software will be 

updated to provide an accurate estimation of visibility in various weather conditions. More 

reduction capabilities will be added as necessary to help with data preparation and analysis. Eight 

months are planned for this task. 

Task 5. Exploratory Analysis: Descriptive statistics and preliminary analysis will be performed. 

Data will be classified according to weather and traffic conditions. This step will facilitate 

advanced modeling and analysis. This task is planned to be completed in four months.   

Task 6. Data Modeling and Analysis: Once trips are identified and data reduced, a manual 

examination of the video for trips occurred in various weather conditions will be performed. 

Speeds, headways, acceleration, and deceleration of the leading and following vehicles will be 

analyzed during adverse weather events from the NDS video data. Time series analysis will be 

used to compare driver response during adverse and normal driving conditions. This procedure 

will be automated through modeling of the leader and follower trajectories collected from the NDS 

speedometer, radars, and GPS speed time series data. A multivariate logistic regression and an 

ordered probit logit regression will be used to model the probability of different visibility levels 

affecting driver performance. Other statistical techniques will be utilized to address the third and 

fifth research questions. Among the techniques will be classical frequentist classification 

approaches to explain the relationship between an event occurring at a given time (crashes and 

near crashes) and a set of risk factors, Bayesian statistics with hierarchical structure, and recent 

data mining and machine learning techniques. 
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This task will include analysis of weather-related events. The task will be focused on quantifying 

driver characteristics, behavior, and performance preceding crashes and near crashes in adverse 

weather conditions to investigate the suitability of vehicle weather data in CV applications. This 

task is scheduled to be accomplished in eight months. 

Task 7. Recommendations and Proposal for Phase 3: Summarize conclusions for Phase 2 and 

provide recommendations for Phase 3. The findings from Phase 2 will be utilized to improve the 

only weather-based VSL corridor in the U.S. This task is scheduled to be completed in two months. 

 

Although many of the driver variables proposed for use in Phase 2 contain no direct identifying 

information (e.g., gender; age; number of annual kilometers traveled; aggregate indices of driver 

knowledge, attention, risk perception), it is possible that data necessary for the identification of 

relevant driving events (e.g., dates, times, routes) could compromise participant anonymity. As 

such, a number of mechanisms will be established to address potential risks’ confidentiality. First, 

trips/events relevant for analyses in Phase 2 will be identified exclusively by VTTI staff given 

criteria mentioned earlier. Individuals with trips meeting the necessary qualifications will be 

identified by a unique participation code along with summary scores for driver-level 

characteristics. Aggregate data for the project will be uploaded to a restricted, confidential scholar 

website maintained by VTTI staff for access by the lead principle investigator (PI) and approved 

graduate students. Data utilized for presentation or publication will contain no identifying 

information.   

Phase 2 data made available to the PI will be maintained exclusively on a password-protected 

computer stored in a locked laboratory on the University of Wyoming campus. The lead PI, 

graduate students, and one of the co-investigators are the sole individuals with access to the 

laboratory and relevant computer passwords. Raw data utilized for Phase 2 will be retained by the 

PI for five years following completion of the study, after which they will be destroyed. 

 

11. TIMELINE 

It is envisioned that total time required for Phase 2 including the submission of the final report 

would be 24 months as shown in Table 1 in the Appendix. The review of the literature will be 

carried out over the first 18 months to ensure up-to-date information of all recently published 

SHRP2 safety research. 

 

12. BUDGET 

As shown in Table 2 of the Appendix, the overall cost of Phase 2 study is $292,674. Of this total 

cost, $142,674 is requested from FHWA, while WYDOT will provide a hard match in the amount 

of $150,000. The requested funding will be used to support three faculty members at UW, one 

computer science consultant, and two graduate students. In addition, a subcontract will be executed 

with VTTI in the amount of $37,980 to secure the required data of this study. This subcontract 

amount was obtained after contacting the director of the Center for Data Reduction and Analysis 

Support. The budget also includes money for one of the PIs to travel to Virginia to secure the data 

if needed. In addition, there is money for one of the PIs to travel to Washington, D.C., to present 

the final report of the study. Table 3 of the Appendix summarizes the anticipated number of hours 

by the research team for each one of the seven tasks proposed in this study. There might be a need 

to shift some of the hours among the various PI, senior personnel, and consultants as the project 

progresses but the overall cost should not change.
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APPENDIX 

TIMELINE TABLE 

Table 1: Work Plan Schedule 

 Month 

Research Task  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Task 1  

Literature Review                              

Task 2 

Data Acquisition                         

Task 3  

Data Preparation                         

Task 4  

Visibility Estimation                               

Task 5  

Exploratory Analysis                         

Task 6  

Data Modeling                         

Task 7 

Recommendations and 

Proposal for Phase 3      

 

  

                

Task 8 

Analysis/ Comparison to 

Wyoming Conditions      
 

  
                

Documentation and 

Deliverables Schedule      

 

 

                 

        Quarter Reports       Final Report and Presentation to FHWA Final Report to WYDOT 
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BUDGET TABLES 

Table 2: Proposal Budget Summary 

 
 

Table 3: Effort by Tasks (Hours and Cost) 

 

LABOR (Prime) Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Cost

Salary/Wages $6,410 $13,305 $20,175 $15,760 $21,070 $23,177 $11,315 $111,212

Fringe Benefits $3,086 $6,415 $9,401 $7,639 $9,847 $11,007 $5,422 $52,817

Other

subtotal labor $9,496 $19,720 $29,576 $23,399 $30,917 $34,184 $16,737 $164,029

CONSULTANTS

Hesham Eldeeb $600 $600 $3,600 $14,400 $0 $0 $1,200 $20,400

subtotal consultants $600 $600 $3,600 $14,400 $0 $0 $1,200 $20,400

SUBCONTRACTORS

*Center for Data Reduction/Analysis Support $0 $37,980 $0 $0 $0 $0 $0 $37,980

(*exempt from indirect)

subtotal subcontractors $0 $37,980 $0 $0 $0 $0 $0 $37,980

OTHER DIRECT COSTS (Prime)

Travel/Meeting Costs $0 $2,500 $550 $3,000 $1,500 $550 $3,000 $11,100

Materials & Supplies $500 $2,500 $1,000 $1,000 $500 $800 $500 $6,800

Postage & Shipping $1,000 $1,000

*Student Tuition (*exempt from indirect) $1,400 $1,400 $1,400 $1,400 $2,000 $1,700 $1,400 $10,700

subtotal ODCs $1,900 $6,400 $2,950 $5,400 $4,000 $3,050 $5,900 $29,600

INDIRECT COSTS (Prime)

Overhead $2,119 $5,064 $6,945 $8,360 $6,583 $7,107 $4,487 $40,666

G&A

subtotal indirect costs $2,119 $5,064 $6,945 $8,360 $6,583 $7,107 $4,487 $40,666

FEE (not to exceed 7%) if applicable $ $ $ $ $ $ $ $

TOTAL PROJECT COSTS $14,116 $69,764 $43,071 $51,558 $41,500 $44,341 $28,324 $292,674

TOTAL PROJECT HOURS 200 360 605 570 600 688 320 3343

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Total

Mohamed Ahmed

Principal Investigator Overall 

Project Management 23% 30 125 120 120 130 130 100 755 49 $36,995

Khaled Ksaibati Senior Personnel 2% 5 10 10 10 10 10 5 60 72 $4,320

Rhonda Young Senior Personnel 4% 5 10 30 10 30 25 10 120 53 $6,360

Joshua Clapp Senior Personnel 4% 5 10 30 10 30 25 10 120 53 $6,360

Graduate Assistants/ Postdoc 63% 150 200 385 300 400 498 185 2118 27 $57,177

Hesham Eldeeb Consultant 5% 5 5 30 120 0 0 10 170 120 $20,400

Totals 200 360 605 570 600 688 320 3343 $131,612

* Include Subcontractors and Consultants

** Total Hours ÷ 174 hours/month ÷ contract months

Hours
Names of 

Principal Staff 

Members*

Role in Study

Time (%) 

Over 

Contract 

Period**

Hourly 

Rate 

($)

Cost ($)
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